Maintaining asset integrity on offshore structures is a priority, which is why owners invest in developing regular maintenance programs to identify irregularities as soon as possible. During a scheduled inspection on an offshore production unit working offshore Africa, workers discovered corrosion on a 26-in. (660-mm) topside production piping system. The pipe needed immediate attention, but the owners did not want to shut in production while the repair was being made. They contracted Clock Spring Company Inc. to provide an engineered composite repair solution to be carried out with the critical production line in service.

The complete pipework had suffered severe external corrosion that affected straight pipe lengths, girth welds, pipe support, T’s, tight radius bends and offtakes. Clock Spring engineers determined the extent of the corrosion and performed a complete in-house engineering analysis to develop a bespoke repair solution that was manufactured in the company’s design facility in Houston.

Because of the range of areas affected, the solution included Clock Spring fully cured laminate as well as Clock Spring Contour wet layup repair, which would be used for the complex geometry configurations. Clock Spring engineers presented the client with a detailed design report outlining the complete repair in accordance with both ASME PCC-2 and ISO TS24817 guidelines.

A team of Clock Spring-trained and certified technicians installed standard Clock Spring 8-layer pre-cured coil sleeves to the straight piping sections, pipe supports, girth welds and 12-inch (305-mm) offtake systems. Because of the extent of the corrosion, installers applied high-compressive-strength filler by hand, molding it in place before installing the Clock Spring coils. The limited clearance between the pipework and deck grating required installers to use a spool feeder to place the repair sleeves.

With repairs made to the straight pipe runs, the team turned its attention to the complex geometry sections that interfaced with the reinforced sections. Clock Spring engineers designed the Contour system specifically for this repair, supplying materials to the work site in component form and mixing them by hand to form the composite repair around the structure on site.

With the repair complete, the topsides was restored to a safe condition for extended service. The Clock Spring design team not only provided safe, quickly executed and effective specialized repairs, but offered complete engineering support following installation.

PIPE DETAILS

  • 26-inch (660-mm) topside production piping system; and
  • Severe external corrosion .

 

PROJECT HIGHLIGHTS

  • Clock Spring and Contour repairs were carried out to restore extensively corroded 26-inch (660-mm) topside production piping system on an offshore asset;
  • The complete pipework was subject to severe external corrosion that affected straight pipe lengths, girth welds, pipe support, T’s, tight radius bends and offtakes;
  • Clock Spring engineers designed a specialized composite repair solution that addressed straight pipe as well as complex pipe geometries; and
  • Production continued while repairs were carried out.

 

Clock Spring training prepares installers to execute repairs using supplied field kits that contain all the materials necessary to perform cost-effective, long-lasting repairs.  Request a meeting with us today.

VIEW FULL ARTICLE

Did you know Clock Spring composite solutions are a fast and safe alternative to traditional repairs for risers or corroded pipe offshore?

Our short video shows how Clock Spring Snap Wrap ES can be installed using rope access in just a few hours instead of several days, reducing risk and causing no disruption to operations.

Designed for 1,000 psi pipe ranging from 0.75 in. to 56 in. diameter, the flexible architecture of this composite solution can be customized for varying levels of protection and structural reinforcement.

Clock Spring training prepares installers to execute repairs using supplied field kits that contain all the materials necessary to perform cost-effective, long-lasting repairs.  Request a meeting with us today.

We look forward showing you how Clock Spring composite solution can address your offshore asset integrity management needs.

Clock Spring's Buddy Powers featured in OTC 2018 article.

Follow the article link below to read more.

FULL ARTICLE

Composite technologies are changing the way corrosion repairs are being executed offshore. Their efficacy has been proven over several decades onshore in pipeline and refinery repairs, and now, they are becoming more common offshore on risers and riser connectors, caissons and large components that have sustained damage in the extremely corrosive seawater/air environment.

Composite technologies are changing the way corrosion repairs are carried out on offshore assets. Though there has been slow adoption of this technology in the oil and gas industry, it is a proven alternative that merits further examination. Composites have been used to repair a range of offshore defects, producing positive results that prove they can compete directly with traditional repair techniques to extend the service life of this critical infrastructure.

CONTENDING WITH CORROSION
Offshore assets are exposed to an extremely corrosive environment. The seawater/air creates an environment that is even more corrosive than conditions beneath the surface. Although, marine coatings provide excellent corrosion protection, when exposed to this environment over time they can fail. Corrosion can lead to damage, structural failure, lost production, and in extreme conditions, environmental incidents. To date, the common repair option has been limited to removing damaged sections of pipe and replacing with new spool pieces, which introduces a range of safety risks associated with heavy lifting and welding. These activities also require a weather window for safe execution, and production must be shut in while the repair is being carried out, which can escalate costs.

Composites were developed specifically to contend with corrosion. In general terms, a composite combines two or more materials, a high-strength reinforcement in fibrous form, incorporated into and bonded by a matrix, usually a thermosetting polymer. The most common strength component is glass.

Most glass fibers consist of E-glass, a term that derived from the words “electrical grade glass.” This super-cooled mixture of metallic oxides is brittle and transparent but has very high tensile strength, 500 ksi (3,400 MPa). Glass is produced in a furnace at about 2,192°F (1,200oC) and spun into fibers of approximately 10 microns in diameter by allowing it to drain under its own weight through many heated bushings.

When engineers are designing a composite, they focus on three characteristics:
• Fiber type: glass, carbon, or aramid (strong, heat-resistant synthetic fibers frequently used in aerospace and military applications)
• Fiber form (typically roving, tow, mat, or woven fabric)
• Fiber orientation or architecture (Reinforcement can be oriented in any direction the designer desires. The most common structural elements are designed with greater strength in the direction subjected to the greatest load.

CONSIDERING THE OPTIONS

It is important to distinguish among the composite repair offerings on the market because not all composites are equal. The distinctions can be critical specific to the particular repair applications, so it is important to understand how composite repairs differ.

Any composite repair being considered for an offshore application should be:

• Non-intrusive, limited disruption to normal production
• Suitable for in-service applications
• Permanent, restores the serviceability to the pipe beyond its design life
• Cost effective
• Fully predictable and verifiable by modeling and/or definitive equations found in current design standards
• Able to eliminate all installation variables
• Eective in all locations and environments
• Eective for all pipe grades and sizes
• Designed to meet or exceed current code requirements.
• Formulated and constructed to eliminate field design and field engineering
• Able to conservatively restore the pipe to its original strength
• Rigorously tested and subjected to peer review
• Field proven.

A composite that will work in an offshore environment must be designed carefully to ensure the mechanical properties can provide the necessary strength to restore the line to the appropriate level of operation, typically to its original design standard. With the proper repair designed, installation procedures must provide the permanency required of the repair. This means the composite repair, when completed, must be able to compete with traditional repair alternatives in terms of safety, economics, control of installation variables and effectiveness.

To be reliable and predictable, a composite should be manufactured under controlled conditions. Manufacturing material in a facility allows accurate control of the ratio of glass to resin under conditions that can be monitored. Within a facility, the unidirectional glass strands can be carefully positioned, pre-tensioned and aligned to maximize strength, and the composite can be compressed, dried, heat-treated, cured, and inspected before being shipped as a completed unit to the repair location. This approach allows design variables to be controlled by the manufacturer, producing repair units that are consistent and documented. Regardless of the manufacturing process and its location, a quality composite requires that the reinforcement be completely saturated with the resin. The composite also must be compacted to squeeze out air bubbles and excess resin and be fully cured before it is suitable for carrying loads. In a factory environment, quality control procedures can deliver these properties more consistently in the finished product than can be achieved in field applications. Without this predictable performance, long-term durability would be questionable.

The composite laminate layers produced by Clock Spring are nominally 0.065-in. (1.65 mm) thick and have a glass fiber content ranging from 60% to 70% by weight (45% to 55% by volume). The resulting material exhibits linear elastic behavior up to the point of failure in tension, typically 1.5% to 2% strain. Elastic modulus values are 5 by 106 psi (0.34 by 7.3 bar) in the fiber direction and 1.4 by 106 psi (0.09 by 7.3 bar) in the transverse direction, with tensile strength in the range of 75-100 ksi (517-690 MPa).

It is important to understand the structure and application of a composite material to gauge its suitability for a particular repair. Composites can fail in three areas: the fibers, shear/laminate bonds, and interface failures between the resin and the fiber. In addition, the composite repair is also susceptible to degradation overtime due to moisture absorption, temperature fluctuations, and fatigue. Uniaxial fibers oriented and protected by “size” that is specially designed and heated to promote bonding of the fiber, size, and resin prevent degradation, delivering a much stronger and longer-lasting composite. These fabrication risks are best managed in a controlled manufacturing environment. Wet wraps applied in the field contend with many variables that can be eliminated in a properly managed facility.

COMPOSITE REPAIR

Composite repairs reinforce the damaged section of the substrate by wrapping the defect area with a composite sleeve that shares the hoop load, reducing the stresses in the pipe wall. The hoop load must be efficiently transferred to the composite for the appropriate load sharing to be achieved. The only way to accomplish this is to fill external defects with a high-compressive strength material that protects the thinned ligament from further yield.

This can be designed into the repair system by using unidirectional rovings or woven cloth as the reinforcing element. Unidirectional rovings provide more strength than woven cloth for the same ratio of glass to resin and are less prone to damage caused by cyclical loading. Unidirectional E-glass embedded in a polyester resin provides the best method for high- pressure reinforcement. This part of the repair is crucial because it re-establishes the strength of the pipe, delivering performance that exceeds the “as new” condition. Repair techniques that do not use filler are unsuitable for critical high-pressure repairs. While relatively new to the offshore arena, fiberglass composite repair sleeves have a long track record in other industries.

Building a better composite

Creating a composite that can withstand harsh environments and high pressures requires engineering that factors site conditions into the formula of the composite. The Clock Spring repair sleeve is a fiberglass composite that has a memory, created by a manufacturing method that constrains its cylindrical shape over several concentric layers, similar to the winding spring of a clock or watch. The glass fibers in the composite wrap are continuous and are aligned circumferentially to maximize the composite strength. When the sleeve is installed on a pipeline with the proper adhesive, the resulting structure provides circumferential reinforcement of the defect and reduces the hoop stress of the steel pipe under the wrap.

This three-part system comprises a unique unidirectional composite structure of glass fibers and polymer base, a patented two-part adhesive system, and a proprietary high-compressive strength load transferring compound.

Two application techniques are available for the repair of both low- and high-pressure systems: full-cure and wet wrap. In the full-cure process, the composite sleeve is completely cured in the manufacturing facility and installed using filler and adhesive in the field. The composite sleeve is coiled slightly smaller than the outside diameter of the pipe and cut to the length required by the repair. This method allows the glass direction and composition to be fully controlled. Wet- wrap requires that the glass cloth be wetted with resin in the field and applied to the pipe in the wet condition. The amount or length of the wrap is variable and determined in the field. Curing takes place as part of the installation process.

A typical repair consists of locating and cleaning the damaged area. Filling the defect and other voids under the repair with a high compressive strength filler material to transfer the loads from the pipe to the externally applied composite sleeve. Using adhesive to secure the composite to the pipe, and keeping the repair under tension while it cures to force excess adhesive and filler out the edge of the unit ensures a fully filled, tight fit. Installation takes approximately 30 minutes, and the repair cures in about two hours.

Several factors make the full-cure composite sleeve installation process more desirable than the wet-wrap process. The full-cure application process eliminates the wet-wrap variables of wrap tension, glass alignment, resin saturation, composite length and the installation variables caused by field conditions. The mechanical properties of the full-cure wrap are more consistent and better defined than those of the wet-wrap.

COMPOSITES IN ACTION

Composites have been applied to a range of offshore repairs. In one case, ultrasonic tests revealed several severe internal defects in a 16-in. (406-mm) pipeline running into the main high-pressure separator on a production facility offshore West Africa. The erosion was significant, affecting multiple places along the pipe and growing at such a rate that imminent failure was likely. If the damage were to reach a critical point, the platform would have to be shut in, resulting in a huge loss of production. In addition to the financial impact, there was potential for considerable environmental impact in the event that the eroded pipe developed a leak.

The operator needed a way to reinforce the pipe without halting production. The goal was to find a safe and reliable repair that would allow the line to function safely until the next planned shutdown, nearly a year away.

A Clock Spring Contour repair was designed for the offshore asset in accordance with ISO 24817 2015 guidelines, which provide requirements and recommendations for qualifying, designing, installing, testing, and inspecting the external application of composite repair systems to corroded or damaged pipework, pipelines, tanks, and vessels used in the petroleum, petrochemical, and natural gas industries.

A team of trained technicians cleaned the section of damaged line using power tools to remove the external coating and then bristle blasted it to create a surface profile equivalent to SA2.5 (which requires cleaning to remove all rust, coating, and mill scale to produce a near-white surface) before applying the adhesive, placing the repair unit and putting it under compression, and allowing it to cure to permanency. With the repair completed, the platform continued to operate without incident until the planned shutdown 12 months later, when the damaged section was scheduled to be replaced.

In another instance, an operator offshore Malaysia discovered extensive pitting in a 12-in. (305- mm) riser with back-to-back bends while conducting a riser inspection on an offshore production facility. In some portions of the pipe, pitting had resulted in 60% wall loss. It was imperative to repair the line quickly without disrupting production, so the company chose to address the problem with a composite repair.

A team of specially trained local experts cleaned the riser, grit-blasting it to an SA 2.5 surface prior to applying the composite repair. Once the area was thoroughly cleaned, repair technicians identified the defects and marked them so they could be appropriately treated. The defects, which were concentrated at the bends, were first repaired with 3-in. (76-mm) wide Snap Wrap strips along a 6-ft (1.8-m) length of pipe.

In cases like this, where Snap Wrap applied around pipe bends is placed with spacing that exceeds 0.5 in. (13 mm), the repair is overlaid by a Clock Spring Contour system. In this application, Contour overwrapped the entire 16.4-ft (5-m) length of the repair to create a solid covering. This hybrid system of prefabricated sleeves and in-the-field cured composite repair merges a robust structural laminate with a exible protective outer composite jacket. The repair is designed to last for two decades.

This was a rapidly executed repair, performed in a day and a half of on-site work. A small team carried out the repair with minimal disruption to daily activities and without taking the riser out of service.

Composites compete under water

Composites are suitable for a broad range of applications, but there are some conditions in which they are not an appropriate repair solution. Composites are unsuitable for situations where the surface cannot be properly prepared, which would lead to issues with bonding or sealing, and they cannot be applied on concrete.

They can, however, be used on condensing pipes and in a range of conditions, including under water to depths of 30 ft, which makes them appropriate for installations that heretofore have been carried out by underwater welders.

Traditionally, welding below the water line is either dry, also called hyperbaric welding, or wet. Dry welding requires a structure to be built around the weld area so water can be pumped out to create a dry environment. The area can be small (conned to the damaged area) or large enough for the welder to physically enter. For large areas, oxygen is pumped out of the enclosure, and helium is pumped in. Wet welding, because it is done in the water, introduces the need for a diver properly outfitted with diving equipment, which means it introduces the risks associated with diving. Electric shock is another risk, as is the possibility of explosion if the welding process is not well controlled.

Because hyperbaric welding is better controlled, it produces a more reliable weld than underwater welding. The problem is that environmental conditions are not always conducive to dry welding. And many owners are not comfortable with the risks – both personal and structural – inherent to wet welding.

A repair sleeve can be placed using a special underwater adhesive. The repair, which can be carried out by a trained diver, is relatively straightforward, following the same approach as a repair in dry conditions. Because this approach requires no construction or complex installations to create a dry environment, a composite repair can produce a lasting repair without any hot work. This capability introduces a new alternative for underwater line repair.

On another asset in the Middle East, corrosion was identified on the riser support clamps that secured the production risers to the hull. The 14-in. (610-mm) heavy wall structural cross member was damaged across a length of 26.25 ft (8 m). Severe external corrosion, which in some cases amounted to 80% metal loss on the structural member designed to hold the riser support clamps, was jeopardizing the safety of hydrocarbon production. The company needed a solution that could be carried out offshore in a short time frame with little disruption to its operations.

Performing the repair required the construction of an engineered heavy-wall composite sleeve, manufactured in 24-in. (600 mm) widths using bi-axial glass architecture. The specialized solution produced extended sleeves that would cover a longer length of pipe than a traditional repair.
A trained and certified team of installers applied extensive filler and molding to rebuild the pipe surface to the original outer diameter and installed the sleeves cut to length in a brick wall fashion.

When the repairs were completed, the riser holding clamps were put back into service. This repair averted an incident and allowed the production platform to safely continue operations both during and following the repair.

LOOKING AHEAD

Composite repairs have become more common on offshore oil and gas assets because they are safe, effective, and relatively simple to execute. While they are newly being considered on a larger scale for offshore applications, they have a long track record of successful application in other industries. Today’s composites are the result of a years of engineering efforts and extensive testing that have resulted in a cost-effective and expedient alternative that eliminates heavy lifting and hot work, delivering effective and long-lasting repairs.

The successful execution of a range of composite repairs illustrates the viability of composite solutions for oshore oil and gas assets. The ease, speed, and effectiveness of composite repairs have the potential to dramatically change the way owners and operators contend with corrosion and extend production life on oshore assets.

When engineers set out to define specifications 20 years ago for offshore units that were expected to stay on site for 20 to 25 years, it was not uncommon to take a very conservative approach. That conservatism is reflected in the many assets that are reaching the end of their design lives but still have the basic structural stability to continue operating for years.

While the hulls and superstructures of some offshore productions systems are fit for continued service, some of the components that have been exposed to significant stresses and fatigue over the years are not. For operations to continue safely, it is vital that the necessary repairs and replacements are carried out effectively.

Evaluating assets

Today asset owners have no difficulty getting assistance with the task of evaluating their facilities for continuing service, including an analysis of critical parts and determining which components have experienced sufficient wear to warrant repair or replacement.

This is a critical first step, but the next step is most likely the one that will determine the cost-effectiveness of the life-extension project. If repairs need to be made, how will they be done, and what products will be used?

Considering composites

Composites could be the answer. Composites have been used for offshore repairs for years in a broad range of applications such as structural repairs to risers, caisson leak repairs and for life extension work on large components that have experienced corrosion and sustained environmental damage.

Crevice corrosion, which is a major integrity threat on offshore assets, is a one of the challenges for which a composite solution is ideal. Because of the way it is formulated and applied, Clock Spring composite repairs provide 360 degrees of protection, ensuring that each square inch of the interphase between the pipe and the sleeve is well sealed. The ability to seal the repair mitigates the effects of previous existing corrosion while preventing further damage.

Because there is not a lot of information readily available to explain how composites are being used offshore, it is difficult for decision-makers to feel confident in selecting composite repair technology for their assets.

As with every technology offering, all are not created equal. It is important to know the historical successes of individual composites to understand when a composite repair is a good option.

Putting composites to work

External corrosion is a safety issue for assets that have been deployed for extended periods offshore. Particularly important are high-risk areas on the platform that are difficult to inspect because of limited access, such as riser pipe sections close to the water line and longer pipe networks that are hard to get to. These areas also can be difficult to repair using traditional products. Damage to these components can be addressed with composite technology that not only provides structural reinforcement in weakened areas but protection from future deterioration.

A recent repair concern came to light when an asset owner was performing an inspection on a rig that had previously experienced a leak. Unwilling to risk an environmental incident, the owner began looking for a way to address the problem. The most critical criterion was to find a solution that would not necessitate shutting in production. Because the Clock Spring repair could be carried out without taking the system offline, it was ideal for this offshore production unit.

Normally, a composite solution can be designed around two commonly used design specifications— The American Society of Mechanical Engineers’ PCC-2 article 4.2 and International Organization for Standardization technical specification 24817. This design guidance allows experts to factor the design conditions and life expectancy of the repair into a formula to determine the composite thickness needed.

Before a product could be introduced on the rig, engineers needed to understand the conditions under which the material would have to perform. The composite solution design was based on knowledge of the pipe, upper bound design temperature/pressure limits and loading conditions that would be experienced in this unique offshore application. Once the specifications were established, the composite repair manufacturing process began with qualifying the manufacturing and design process using one of the trusted international standards. To exercise the best process control, Clock Spring provided a method statement and a full design report that presented the basis for the engineering calculations used in the design and outlined the installation procedure.

E&P

See full article featured in E&P.

Pipeline operators work hard to ensure their pipelines are protected from external corrosion. However, it can be more challenging for operators to keep their pipelines safe from third-party interference. While pipelines are buried, well-marked, and permission is meant to be obtained before digging near a pipeline, in some cases a third party will cause mechanical damage. This can include dents and gouges, which tend to be caused by construction and agriculture, or contact with rocks in the backfill and settlement.

Between 1994 and 2013, one-third of the serious incidents on all types of pipelines were caused by mechanical damage during excavations. This is more than any other single cause1. However, a dramatic reduction of these incidents has trended over the last 20 years due to significant efforts made by the pipeline industry to increase public awareness and engage all stakeholders to the location of underground pipelines.

Depending on the severity and type of dent or mechanical damage, remediation may be considered by the pipeline operator. Composite pipeline repair sleeves are an extremely popular alternative to traditional repair methods such as “cut and replace,” welded sleeves and clamps. They can effectively repair a pipeline with up to 80% external metal loss defects. Composite sleeves have a proven, decades-long track record that has been developed, tested and peer-reviewed as being a suitable system of reinforcement on mechanically damaged liquid and gas pipelines.

Over time, a pipeline will experience some amount of cycling which needs to be addressed as well. The action of pressure cycling on a dent will eventually lead to the initiation of fatigue cracks, and ultimately failure, if not properly addressed. Composite sleeves have been shown to extend the life of a damaged pipe by immobilizing the defect and controlling re-rounding and bulging of the weakened area. It is required to use a filler material underneath the composite to effectively control movement of the dent during pressure cycles.

Composite sleeves are a suitable repair for most types of mechanical damage on pipelines. The four main codes/guidelines utilized to allow the repair of mechanical damage using composite sleeve repairs are:

  • ASME B31.4 (2016)
  • ASME B31.8s (2016)
  • CSA Z-662 (2015)
  • PRCI repair manual (2006)

Testing

In 1987, the Gas Research Institute (GRI, now GTI) assembled a team of pipeline professionals and research organizations to lead a comprehensive program to verify the effectiveness, durability, and performance characteristics of a repair that permanently restores the serviceability of the pipe. GRI engaged Houston-headquartered Stress Engineering to lead the mechanical damage aspects of the program. The testing included dent and gouge repairs.

The 1997 GRI Report No. GRI 97-0143, Evaluation of a Composite System for the repair of mechanical damage in Gas Transmission Lines, involved full-scale tests completed on 12-inch diameter pipe with D/t ratios of 51 and 68 having 15% dents with gouges. Pressure cycles were initially applied between 0 and 50% MAOP for 50,000 cycles, and then between 0 and 100% MAOP until failure. The results showed that the Clock Spring repair system procedure was effective in increasing the fatigue life for the repaired defects by two orders of magnitude when compared to unrepaired sections.

In addition, Clock Spring products were installed over several pipe diameters with increased D/t ratios (96) and gouged depths (30% and 50% of the wall) with repairs applied at 0%, 50%, and 90% MAOP were cycled to prove acceptable fatigue of over 250,000 cycles. Fatigue testing indicates that composite repair sleeves extend fatigue life by an order of magnitude over grinding as the sole repair. The results of this study provided several important insights as to the importance of inspection and the removal of cracks or stress risers from the defect.

Since this landmark study, Clock Spring has had 25 years of dent performance of highly fatigued pipelines globally. The composite sleeve repair system is manufactured in a factory under controlled conditions and then bonded to the pipeline. This type of repair allows greater repeatability, quality and predictability in the pipeline repair installed at the mechanically damaged repair location.

Composite Sleeve Application

Clock Spring composite sleeves are installed by certified technicians in three relatively quick steps. The pipeline does not need to be shut down during the repair process.

Step 1: Pipe preparation – Commercial sand blast to remove coating, removal of stress concentrators in accordance with applicable codes and inspect dent area for surface cracking.

Step 2: Molding the filler into defected area – This incompressible material fills the dent area and acts as a load-transfer agent to transfer the stresses from the pipe to the composite sleeve. If molded, a visual inspection before the installation of the surface can verify good fit-up of the sleeve.

Step 3: Fit the composite sleeve onto the pipe and cinch it down to ensure maximum strength in repair.

Once these steps are complete the composite will cure within one hour and the pipe is ready to be recoated and backfilled.

Case Study

A pipeline dent becomes an immediate concern if the dent is severe or sharp enough to induce cracking. If the dent was caused by third-party damage, such as gouging, this can also initiate cracking. Both of these immediate concerns can also be related to coating disbondment. A coating disbondment issue can lead to corrosion which also affects the integrity of the dent.

An example of addressing this threat using the above procedure for repair features a molding step before the installation of a Clock Spring repair sleeve. An 8% dent with a gouge approximately 10 inches long was dressed to remove stress concentrators and prepared before a single-wrap mold formed the filler material in the dent region, building back the ovality of the pipeline. The molding step ensured constraint of the dent once the repair sleeve was installed.

A dent represents permanent damage to a pipeline by deformation. Dents typically result from a purely radial displacement of the pipe wall during either construction or from external land movement of the pipe across a hard surface, such as a rock. For example, 30-inch diameter gas pipeline with bottom-side dent was repaired using Clock Spring’s ‘Spool Feeder’ method due to limited clearance and confined space.

Conclusion 

One of the many challenges operators face each day is keeping their pipelines safe from the public. It is important that operators are aware of the methods available for repairing mechanically damaged pipe and have a plan in place for when they encounter it. Composite sleeves have been used to constrain the dent.

Composite sleeves are proven to provide almost two orders of magnitude improvement in fatigue life compared to grinding alone and almost three for unrepaired pipe. The strain, as the dent tries to flex, is transferred through the incompressible material into the composite repair.

It is also important that operators fully assess the composite they want to utilize to repair their pipelines, as not all composite repairs are the same. Any company offering a composite repair system for mechanical damage should be able to back up its claims of repair suitability with valid and independent testing.

1 DOT/PHMSA (2014) Pipeline Significant Incident files.  Available at http://primis.phmsa.dot.gov/comm/DamagePrevention.htm.

PDF - Download

Clock Spring Composite Sleeves Address Mechanical Damage to Pipelines

A major North African based transmission pipeline operator recently excavated a section of 42’’ high pressure gas transmission pipeline. Locating the repair in the middle of the desert was a simple and quick operation due to the marker band performance and GPS within the ILI. 
 
 

After ILI inspection, new corrosion was found on either side of the Clock Spring reinforcement, but the Clock Spring coils were still hard at work protecting the pipe and the environment.  Additional Clock Spring repairs will now be installed extending operational performance decades into the future.